A Reaction Cascade Leading to
 1,6-Didehydro[10]annulene \rightarrow 1,5-Dehydronaphthalene Cyclization Initiated by Thiol Addition

Andrew G. Myers* and Peter S. Dragovich

Contribution No. 8764, Arnold and Mabel Beckman Laboratories of Chemical Synthesis California Institute of Technology Pasadena, California 91125

Received March 24, 1993
The simple aromatic hydrocarbon 1,6 -didehydro[10]annulene (1) has recently been prepared and characterized spectroscopically at low temperature ($\leq-90^{\circ} \mathrm{C}$). At $-60^{\circ} \mathrm{C}$ and above, 1 undergoes a rapid first-order cyclization to form the biradical 1,5 -dehydronaphthalene (2) a sevidenced by the production of naphthalene and, in deuteriated solvents, 1,5 -dideuterionaphthalene. The halflife for the transformation of 1 to 2 is ~ 25 minat $-51^{\circ} \mathrm{C}$ making this the most rapid biradical-forming cycloaromatization now known. ${ }^{1}$ As a first step toward the development of agents for the cleavage of DNA mediated by 1,5 -dehydronaphthalene biradical intermediates, we report an enantioselective synthesis of the epoxy dienediyne 3 and evidence for its transformation to such biradicals upon treatment with methyl thioglycolate.
The epoxy dienediyne structure 3 arose from consideration of the mechanism of thiol activation of neocarzinostatin chromophore ${ }^{2}$ and a desire to achieve synthetic simplification by the use of symmetry. Substrate 3 was envisioned to undergo thiol addition to form the cumulene 4 and, after elimination of methanesulfonic acid, the 1,6 -didehydro $[10$]annulene intermediate 5 (Scheme I). Previous experience with an intermediate related to 4 suggested that the elimination reaction that forms 5 would be rapid relative to the potentially competitive cyclization of 4 to the biradical $6 .{ }^{1}$ An interesting feature of the 1,6didehydro[10] annulene intermediate 5 is the fact that, by virtue of the lower symmetry of 5 versus 1 , the two modes of 1,5-dehydronaphthalene formation from $\boldsymbol{5}$ are not degenerate, as is the case with 1 (pathways A and B, affording 7 and 8 , respectively, Scheme I). The synthesis of 3 and the details of its thiol-induced transformations are described below.
The well-established prostaglandin intermediate 9 , synthesized in 96% ee following literature procedures, served as starting material for the preparation of 33^{3} Slow addition of a solution of iodine (1.7 equiv) in a mixture of dichloromethane and pyridine (1:1) to an ice-cooled solution of 9 in the same solvent followed by stirring at $23^{\circ} \mathrm{C}$ for 2 h provided the iodide $10 \mathrm{in} 93 \%$ yield after workup and flash column chromatography. ${ }^{4}$ Treatment of 10 with allenylmagnesium bromide (4.0 equiv) ${ }^{\text {s }}$ in ethyl ether at $23^{\circ} \mathrm{C}$ afforded the diastereomeric alcohols 11 and 12 in 36 and 62% yield, respectively, after chromatography on silica gel. The stereochemistry of diastereomer $12\left(\mathrm{mp} 57-61^{\circ} \mathrm{C}\right)$ was established

[^0]
Scheme I

by X-ray crystallography. ${ }^{6}$ Treatment of diastereomer 11 with neat (diethylamino)trimethylstannane (3.0 equiv) at $23^{\circ} \mathrm{C}$ for 3.5 h provided the trimethylstannylacetylene 13 in 95% crude yield following concentration and aqueous workup (required to hydrolyze the tertiary trimethylstannyl ether). ${ }^{7}$ This product was dimerized in the presence of tetrakis(triphenylphosphine)palladium(0) (0.20 equiv) in deoxygenated benzene $\left(70^{\circ} \mathrm{C}, 12\right.$ h) affording the C_{2}-symmetric diol 14 in 34% yield. ${ }^{8}$ Attempts to produce 14 directly from 11 employing palladium/coppercatalyzed coupling procedures ${ }^{9}$ formed only the Glaser-type acetylene dimerization product, in accord with literature precedent. ${ }^{8 b}$ Treatment of a solution of 14 in dichloromethane at $0^{\circ} \mathrm{C}$ with dimethyldioxirane (~ 1.0 equiv) ${ }^{10}$ afforded the epoxide 15 in 41% yield after purification by flash column chromatography. ${ }^{11,12}$ Exposure of 15 to 4 -(dimethylamino)pyridine (20 equiv) and methanesulfonic anhydride (10 equiv)

[^1]
Chart I

9

$11 \mathrm{R}=\mathrm{H}$ $13 \mathrm{R}=\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$

14

16

17

18
$\mathrm{TBS}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{t}-\mathrm{Bu}$
in dichloromethane at $23^{\circ} \mathrm{C}$ for 7 h then provided the mesylate 3 in 70% yield. Mesylate 3 is stable toward purification by flash column chromatography and in solution in the presence of a freeradical inhibitor.

Treatment of the mesylate $3(1.7 \mathrm{mM})$ with methyl thioglycolate (10 equiv) and triethylamine (10 equiv) in a deoxygenated mixture of dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF, 4:1, respectively) containing 1,4-cyclohexadiene (1.0 M) for 12 h at $23^{\circ} \mathrm{C}$ produced the isomeric naphthalene derivatives

[^2]16 and 17 in 67 and 20% yield, respectively. ${ }^{13}$ A similar experiment conducted in deuteriated solvents (1,4-cyclohexadiene, DMSO, and THF, natural abundance methyl thioglycolate) afforded 16 and 17 with the indicated levels of deuterium incorporation at the sites anticipated from a consideration of their putative biradical precursors, 7 and 8. Not surprisingly, intermediate 7 undergoes a particularly efficient intramolecular hydrogen atom transfer from the methylene group of the methyl thioglycolate appendage. ${ }^{14}$ As mentioned above, the intermediate 5 may be envisioned to undergo two nondegenerate cyclization reactions to form the 1,5 -dehydronaphthalene biradicals 7 and 8. While the origin of the product 17 is mechanistically ambiguous, potentially arising from 5 and/or 6, the origin of product 16 is not. That we observe both products argues strongly for the intermediacy of the annulene 5 . The unequal distribution of 16 and 17 , with 16 favored $\sim 3: 1$ over 17 , is clearly a manifestation of substitution upon the cyclization reaction. In this regard, it is interesting to note that distances a and b within structure 18 are determined to be 3.04 and $3.10 \AA$, respectively, by MM2* calculations, suggesting that a predisposition exists for cyclization along pathway \mathbf{A} within the ground-state structure. ${ }^{15}$

In summary, a system for thiol-induced formation of a 1,6 didehydro[10]annulene intermediate and thence the corresponding 1,5-dehydronaphthalene biradicals is described. Presentgoals are to modify structure 3 so as to confer an affinity for double helical DNA and DNA cleaving activity.

Acknowledgment. We acknowledge Dr. Jia-Ning Xiang for optimizing the preparation of intermediate 9 and Dr. Joseph Ziller at the University of California, Irvine for performing the X-ray analysis of compound 12. This work was generously supported by the National Institutes of Health. P.S.D. acknowledges an ACS Division of Organic Chemistry Graduate Fellowship sponsored by the Proctor \& Gamble Company.

Supplementary Material Available: Tabulations of $1 R,{ }^{1} \mathrm{H}$ NMR, and high-resolution mass spectral data and reproductions of ${ }^{1} \mathrm{H}$ NMR spectra for compounds 3 and 10-17 and an ORTEP diagram with crystal structure data for compound 12 (23 pages). Ordering information is given on any current masthead page.

[^3]
[^0]: (1) Myers, A. G.; Finney, N. S. J. Am. Chem. Soc. 1992, 114, 10986.
 (2) (a) Myers, A. G. Tetrahedron Lett. 1987, 28, 4493 . (b) Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110,7212. (c) Myers, A. G.; Proteau, P. J. J. Am. Chem. Soc. 1989, 111, 1146.
 (3) (a) cis-3,5-Diacetoxycyclopent-1-ene: Deardorff, D. R.; Myles, D. C. Org. Synth. 1989, 67, 114. (b) 3(R)-Acetoxy-5(S)-hydroxycyclopent-1-ene: Deardorff, D. R.; Matthews, A. J.;McMeekin, D.S.;Craney, C. L. Tetrahedron Lett. 1986, 27, 1255. (c) 4(R)-Hydroxycyclopent-2-en-1-one: Tanaka, T.; Kurozumi, S.; Toru, T.; Miura, S.; Kobayashi, M.; Ishimoto, S. Tetrahedron 1976, 32, 1713. (d) For a review of the synthesis and chemistry of 9 and related compounds, see: Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 847.
 (4) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M. R. Tetrahedron Lett. 1992, 33, 917.
 (5) (a) Crombie, L. J. Chem. Soc. 1952, 4338. (b) Sondheimer, F.; Wolovsky, R.; Ben-Efraim, D. A. J. Am. Chem. Soc. 1961, 83, 1686 and references therein. See, also: (c) Wender, P. A.; Harmata, M.; Jeffrey, D.; Mukai, C.; Suffert, J. Tetrahedron Lett. 1988, 29, 909.

[^1]: (6) Diastereomer 12 was converted into the enantiomer of diastereomer 11 in 67% yield by the following sequence: desilylation with tetrabutylammonium fluoride in THF ($23^{\circ} \mathrm{C}, 45 \mathrm{~min}, 98 \%$); oxidation with pyridinium chlorochromate (88%); reduction with sodium borohydride in methanol at $0^{\circ} \mathrm{C}$ (91%); and silylation with tert-butyldimethylsilyl chloride, triethylamine, and catalytic 4 -(dimethylamino)pyridine (85%).
 (7) (a) Wright, C. M.; Muetterties, E. L. Inorg. Synth. 1967, 10, 137. (b) Jones, K.; Lappert, M. F. J. Organomet. Chem. 1965, 3, 295.
 (8) (a) Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138. For the use of this organometallic coupling reaction in synthetic studies of molecules related to neocarzinostatin chromophore, see: (b) Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. J. Am. Chem. Soc. 1989, 111, 4120. (c) Hirama, M.; Gomibuchi, T.; Fujiwara, K.; Sugiura, Y.; Uesugi, M. J. Am. Chem. Soc. 1991, 113, 9851 .
 (9) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467. (b) Ratovelomana, V.; Linstrumelle, G. Synth. Commun. 1981, 11, 917. (c) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313.
 (10) (a) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847. (b) Adam, W.; Chan, Y.Y.; Cremer, D.; Gauss, J.; Scheutzow, D.; Schindler, M. J. Org. Chem. 1987, 52, 2800. (c) Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, 22, 205.

[^2]: (11) Epoxidation of 14 with m-CPBA (1.0 equiv) in dichloromethane at $0^{\circ} \mathrm{C}$ produced the identical epoxide, albeit in lower yield ($\sim 20 \%$). The stereochemistry of 15 was assigned as shown based on the assumption that the m-CPBA-mediated epoxidation proceeds with direction from the hydroxyl group.
 (12) The analogous dimerization of alcohol 12 and subsequent epoxidation of the resulting diol proceeded in substantially lower yields (20 and 5%, respectively).

[^3]: (13) The stereochemistry of 16 and 17 was assigned on the basis of ${ }^{1} \mathrm{H}$ NMR coupling constants and with the presumption that the thiol addition occurs opposite the bulky tert-butyldimethylsilyloxy group.
 (14) For related observations, see: (a) Wender, P. A.; Tebbe, M. J. Tetrahedron Lett. 1991, 32, 4863. (b) Chin, D.-H.; Goldberg, I. H. J. Am. Chem. Soc. 1992, 114, 1914.
 (15) Computer modeling was performed using the MM2* force field (see: Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph 177; American Chemical Society: Washington, DC, 1982) as part of the program Macromodel V3.5X: Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.;Still, W. C. J. Comput. Chem. 1990, 11, 440. This modeling study is intended to be suggestive only since the analysis does not examine the relevant transitionstate energies of the two biradical-forming pathways.

